Computational Study of Uniaxial Deformations in Silica Aerogel Using a Coarse-Grained Model.
نویسندگان
چکیده
Simulations of a flexible coarse-grained model are used to study silica aerogels. This model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792), consists of spherical particles which interact through weak nonbonded forces and strong interparticle bonds that may form and break during the simulations. Small-deformation simulations are used to determine the elastic moduli of a wide range of material models, and large-deformation simulations are used to probe structural evolution and plastic deformation. Uniaxial deformation at constant transverse pressure is simulated using two methods: a hybrid Monte Carlo approach combining molecular dynamics for the motion of individual particles and stochastic moves for transverse stress equilibration, and isothermal molecular dynamics simulations at fixed Poisson ratio. Reasonable agreement on elastic moduli is obtained except at very low densities. The model aerogels exhibit Poisson ratios between 0.17 and 0.24, with higher-density gels clustered around 0.20, and Young's moduli that vary with aerogel density according to a power-law dependence with an exponent near 3.0. These results are in agreement with reported experimental values. The models are shown to satisfy the expected homogeneous isotropic linear-elastic relationship between bulk and Young's moduli at higher densities, but there are systematic deviations at the lowest densities. Simulations of large compressive and tensile strains indicate that these materials display a ductile-to-brittle transition as the density is increased, and that the tensile strength varies with density according to a power law, with an exponent in reasonable agreement with experiment. Auxetic behavior is observed at large tensile strains in some models. Finally, at maximum tensile stress very few broken bonds are found in the materials, in accord with the theory that only a small fraction of the material structure is actually load-bearing.
منابع مشابه
Study on diffusion coefficient of benzene and ethyl benzene vapours in nanoporous silica aerogel and silica aerogel-activated carbon composites
In this study, nanoporous silica aerogel and silica aerogel-activated carbon composites have been synthesized using a water glass precursor by cost effective ambient pressure drying method. Equilibrium and kinetics of benzene and ethyl benzene adsorption on silica aerogel and its composites have been measured in a batch mode at tree weights of adsorbent. For the first time, the experimental dat...
متن کاملRemoval of Cadmium Using a Novel Nano Composite, Silica Aerogel, Activated Carbon
A novel composite adsorbent, Silica aerogel activated carbon was synthesized by sol-gel process atambient pressure drying method. The composite was characterized by Fourier transform infraredspectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry(DSC) and Nitrogen adsorption / desorption isotherms (BET).In the present study, the mentioned adsorbent was used m...
متن کاملAdsorption of Phenol by Super Hydrophobic Phenol-Formaldehyde/Silica Hybrid Aerogel
Phenol-formaldehyde/silica hybrid gel with hydrophobic character, high porosity, and thesmall pore size mean was prepared via sol-gel polymerization under solvent saturated vaporatmosphere and was dried by ambient drying method. The silica sols were prepared based onTetraethoxysilane (TEOS) and Methyltrimethoxysilane (MTES) as hydrophilic and hydrophobicprecursors, respectively. Phenol-formalde...
متن کاملMolecular Dynamics Simulations of Freezing Behavior of Pure Water and 14% Water-NaCl Mixture Using the Coarse-Grained Model
We performed molecular dynamics simulations using the coarse-grained model to study the freezing behavior of pure water and 14% water-salt mixture in a wide range of temperatures for a very long time around 50 nanoseconds. For the salty water, an interface in nanoscale was used. For both systems, the f...
متن کاملMechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams
Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 119 27 شماره
صفحات -
تاریخ انتشار 2015